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Solution 7: Constant drawdown in
a well in a leaky aquifer

Assumptions:

1. Water level in well is changed instan-
taneously by s, at ¢=0.

2. Well is of finite diameter and fully pen-
etrates the aquifer.

3. Aquifer is overlain, or underlain,
everywhere by a confining bed hav-
ing uniform hydraulic conductivity
(K') and thickness (b').

4. Confining bed is overlain, or underlain,
by an infinite constant-head plane
source.

5. Hydraulic gradient across confining bed
changes instantaneously with a
change in head in the aquifer (no re-
lease of water from storage in the
confining bed).

6. Flow in the aquifer is two dimensional
and radial in the horizontal plane
and flow in the confining bed is verti-
cal. This assumption is approximated
closely where the hydraulic conduc-
tivity of the aquifer is sufficiently
greater than that of the confining
bed.

Differential equation:

8%s/or* + (1/r)ds/ér — sK'ITb' = (S/T)ds/ot

This differential equation describes nonsteady
radial flow in a homogeneous isotropic confined
aquifer with leakage proportional to draw-
down,

Boundary and initial conditions:

s(r,00=0, r=0 )
s(r t)=8,, t=0 2)
s(e,t)=0, t=0 3

Equation 1 states that, initially, drawdown
is zero. Equation 2 states that at the wall or
screen of the discharging well, drawdown in
the aquifer is equal to the constant drawdown
in the well, which assumes that there is no en-
trance loss to the discharging well. Equation 3
states that the drawdown approaches zero as
distance from the discharging well approaches
infinity.

Solutions (Hantush, 1959):
1. For the discharge rate of the well,

Q = 277s,G(a,r,./B),
where

G(a,r/B) = (r./B)K (r./B)K,(r./B)
+(@/7®) exp [ -a(r,/B)]

f{uexp(-—auz)/[e]oz W + Y, @ ]}
0

-dul[u® + (r./B)],

and a = Tt/8Sr?,
B = VTb/K'.

.

K, and K, are zero-order and first-order, re-
spectively, modified Bessel functions of the sec-
ond kind. J, and Y, are the zero-order Bessel
functions of the first and second kind, re-
spectively.

II. For the drawdown in water level

s = s, (Ko(r/B)Kr,/B)

oC
+(@fmexp(—ar, By | SXp(au)
0 u® + (ru‘/B)')

CJourir Y o) — Y(ur/r,)dWu) 4
Jiw) + Y u) wdu (&)

with «, B, K,, J,, and Y; as defined previously.
Comments:

A cross section through the discharging well
is shown in figure 7.1. The boundary conditions
most commonly apply to a flowing artesian
well, as is shown in this illustration.

Figure 7.2 on plate 1 is a plot of dimension-
less discharge (G(a,r./B)) versus dimension-
less time (a) from data of Hantush (1959, table
1) and Dudley (1970, table 2). Selected values
of G(a,r,/B) are given in table 7.1. The corre-
sponding data curve should be a plot of ob-
served discharge versus time. The data curve is
matched to figure 7.2 and from match points
(o,G(a,r,/B)) and (¢,@), T and S are computed
from the equations

“-~
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Ficure 7.1.—Cross section through a well with constant drawdown in a leaky aquifer.

T = Q/C2ws,.G(a,r,./B))

and S = Ttlard).

Figure 7.3 on plate 1 contains plots of dimen-
sionless drawdown (s/s,) versus dimensionless
time (ar2/r?). The corresponding data plot
would be observed drawdown versus observa-
tion time. Matching the data and type curves
by superposition and choosing convenient
match points (s/s,.,ar2/r?) and (s,t), the ratio of
transmissivity to storage coefficient can be
computed from the relation

TIS = (ar2/r)(rit).

Figure 7.3 was plotted from function values
generated by a FORTRAN program. This pro-
gram is listed in table 7.2. The input data for
this program consist of three cards coded in
specific formats. Readers unfamiliar with

FORTRAN format items should consult a
FORTRAN language manual. The first card
contains: the smallest value of alpha for which
computation is desired, coded in format E10.5
in columns 1-10; the largest value of alpha for
which computation is desired, coded in format
E10.5 in columns 11-20. The output table will
include a range in alpha spanning these two
values up to a limiting range of nine log cycles.
The second card contains 13 values of r,/B.
These coded values are the significant figures
only and should be greater or equal to 1 and
less than 10. The power of 10 by which each of
these coded values is multiplied is calculated
by the program. Zero (or blank) coding is per-
missible, but the first zero (or blank) value will
terminate the list. The 13 values, all coded in
format F5.0, are coded in columns 1-5, 6-10,
11-15, 16-20, 21-25, 26-30, 31-35, 36-40,
41-45, 46-50, 51-55, 56-60, and 61-65. The
third card contains the radius of the control
well and distances to the observation wells.
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TaBLE 7.1.—Values of G(a,r,/B)
| Values for r,/B < 1x107 and a > 1x 10" are from Hantush (1959, table 1), others are from Dudley (1970, table 2)]

r./B

a 0 6x1072 1x10°2 2x102 6x1072 1x107! 2x107! 6x107! 1x10°
1 X107t 2.24 2.24 2.24 2.25 2.25 2.25 2.26 2.31 2.43
2 1.71 1.71 1.71 1.71 1.72 1.72 1.73 1.81 1.96
5 1.23 1.23 1.23 1.23 1.23 1.24 1.25 1.38 1.61
1 X 10° 983 .983 .983 .984 .986 990 1.01 1.18 1.49
2 .800 .800 .800 .801 .804 .809 .834 1.07 1.44
5 .628 .628 628 .629 .633 .642 .682 1.01 1.43
1 X 10 534 .534 534 .535 541 554 611
2 .461 461 461 .462 472 491 .569
5 .389 .389 .389 390 .407 .438 .548
1 xX10° .346 .346 .346 349 374 417 .545
2 311 311 312 .316 .353 .408
5 .274 275 .276 .284 341 .406
1 X107 .251 .252 .255 .266 .339
2 .232 .234 .239 .255
5 210 215 222 .249
1 X 10% .196 .204 .216 .248
2 185 197 213
5 170 192 212
1 X 108 161 191
2 .152
5 .143
1 X 108 .136
2 .130
5 123 191 212 .248 .339 .406 .545 1.01 1.43

r./B

a [1} 1x107% 2x107® 6x1073 1x10™* 2x10~* 6x10~* 1x1072 2x107?
1 X 10¢ 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.196 0.197
2 .185 .185 185 .185 .185 .185 185 .185 .185
5 .170 .170 .170 170 170 .170 170 .170 173
1 X10° 161 161 161 .161 .161 161 .162 .162 167
2 .152 152 .152 .152 .152 152 .153 155 .163
5 143 .143 .143 .143 .143 143 144 .148 .161
1 X 10® .136 .136 .136 .136 .136 .137 .139 .144 .159
2 .130 .130 130 130 130 131 135 143 159
5 123 .123 123 123 123 124 .133 142 .158
1 X107 1118 118 118 118 118 120
2 114 114 114 114 114 116
5 .108 .108 .108 .108 .110
1 X10° .104 .104 .104 .105 108
2 .100 .100 101 .103 107
5 .0958 .0958 .0966 .102
1 X10° 0927 .0930 .0943
2 .0899 .0906 .0927
5 .0864 .0880 .0916
1 X 10" .0838 .0867 .0914
2 .0814 .0862
5 .0785 .0860
1 x10" 0764 .0860 .0914 .102 107 .116 133 142 .158
2
5

The control well radius (r,.) is coded first, in
columns 1-8 in format F8.2. The distances (r)
to the observation wells (maximum of nine) are
coded next, in monotonic increasing order
(smallest r first, largest r last), in columns
9-16, 17-24, 25-32, 33-40, 41-48, 49-56,
57-64, 65-72, and 73-80, all in format F8.2. If
two or more observation wells have the same
distance, this common distance should be coded
only once, the function values will apply to all
wells at the same distance from the control

well. If the number of observation wells is less
than nine, the remaining columns on the card
should be left blank.

The integral in equation 4 is approximated
by

xX
f f(u’a’ru /B) dll =
0
8000
p)
i=1

f(—=Au/2 + iAu,a,r,/B) Au .
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This expression is a composite quadrature with
equally spaced abscissas. The abscissas are
chosen at the midpoints of the intervals instead
of the ends because the integrand is singular at
1 =0. The value of Au used is related to o and is
Au < 1073/V'a . The r,/B values then selected
by the program satisfy r./B = 10 Au. These two
constraints, though empirical, are related to
the behavior of the integrand; the first con-
straint is related to the term e "*“'as u becomes
large, and the second to w/(u?+(r,./B)?» as u
becomes small.

The Bessel functions K(»/B), K,(r./B) are
evaluated by the IBM subroutine BESK. A de-
scription of this subroutine may be found in the
IBM Scientific Subroutine Package.

The Bessel functions of the second kind in
the integrand, Y,(x) and Y ,(ur/r,), are evalu-
ated using IBM subroutine BESY, which is
discussed in IBM SSP manual. The Bessel
functions (1) and J,(ur/r,.) are evaluated for
arguments less than four by a polynomial ap-
proximation consisting of the first 10 terms of
the series expansion

() = 3 (=1 @¥2)"/(n )2,

For arguments greater than or equal to four,
the asymptotic expansion is used

Jox) = P eos (x — w/4) + @ sin (x — 7/4).

P and @ are calculated by the algorithm used
in IBM subroutine BESY.

The output from this program consists of ta-
bles of function values, an example of which is
shown in figure 7.4.

Solution 8: Constant discharge
from a fully penetrating well of
finite diameter in a nonleaky
aquifer

Assumptions:

1. Well discharges at a constant rate, Q.

2. Well is of finite diameter and fully pen-
etrates the aquifer.

3. Aquifer is not leaky.

4. Discharge from the well is derived from
a depletion of storage in the aquifer
and inside the well bore.

Differential equation:
0%s/0rt+(1/r)ds/ior = (SIT)ds/dt, r=r,
This differential equation describes
nonsteady radial flow in a homogeneous iso-

tropic aquifer in the region outside the pumped
well.

Boundary and initial conditions:

s(ry, t) = s,.(), t>0 (D
s(=,6)=0,¢t>0 (2)
s(r,0) =0, r=r, 3
$.(0)=0 4

(2mr, T)ds(r,., )/or —(wr2)ds,(t)/ot
= —-Q,t>0 (5)

Equation 1 states that the drawdown at the
well bore is equal to the drawdown inside the
well, assuming that there is no entrance loss at
the well face. Equation 2 states that drawdown
is small at a large distance from the pumping
well. Equations 3 and 4 state that, initially,
drawdown in the aquifer and inside the well is
zero. Equation 5 states that the discharge of
the well is equal to the sum of the flow into the
well and the rate of decrease in storage inside
the well.

Solution (Papadopulos and Cooper, 1967;
Papadopulos, 1967):
s = (Q/4nT) F(u,a,p),

where

x

Fu,a,p) = (8a/7‘r)f
0

[(1—exp(—B2p%/4u)] [Ju(BPIA(B)—Y (Bp)B(B)]

ap

[a®]: + [B®] 82,
and
B(B) = BJ,(B)—2ad (),
A(B) =BY (B)—2aY (B),
u =rS/4Tt,
a=riS/rz,
and p=rir..
J, and Y,, J, and Y,, are zero-order and

first-order Bessel functions of the first and sec-
ond kind, respectively.
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The drawdown inside the pumped well is ob-
tained at r = r, and can be expressed as
(Papadopulos and Cooper, 1967, p. 242):

= (Q/4nT) F (u,,a),

where F(u,,0) = F(u,a,1),

and u, = rz2S/4T.

Comments: A cross section through the dis-
charging well is shown in figure 8.1. The
geometry, except for the region of the well bore,
is the same as for solution 1 (Theis solution). It
is apparent from figure 8.2 and 8.3 (on plate 1)
that F(u,o,p) approaches W(u), the
Theis solution, as time becomes large.

Ground surface

Static level
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Papadopulos (1967, p. 161) stated that for
t>2.5%10%./T, or ap¥u>10*, the function
F(u,a,p) can be closely approximated by
F(u,a,p)=W(u). Papadopulos and Cooper
(1967, p. 242) stated that for t>2.5x10% r.¥T,
or afu, >10% the function F(u,,x) can be
closely approximated by F(u,,,0)=W(u,). An
examination of the type curves and function
values indicates that F(u,,a0)=W(u,) (less
than 5-percent error) for a/u,,>10% and hence ¢
should only be greater than 25 r.%T for draw-
down in the pumped well.

Figures 8.2 and 8.3 were prepared from func-
tion values given in Papadopulos and Cooper
(1967) and Papadopulos (1967), which are re-
produced in table 8.1. For drawdown observa-
tions in the pumped well, the method of
analysis is to plot drawdown versus time and
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Ficure 8.1.—Cross section through a discharging well of finite diameter.
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Ficure 8.2.-—Five selected type curves of F(u,,a), and the Theis solution, versus 1/u,.

then superimpose the plot on figure 8.2. After
match points of (s,t) and (F(u,,®), 1/u,) are
chosen, the transmissivity can be computed
from the relation T=(Q/4ws) F(u,,a). Then,
the storage coefficient can be determined from
S=(4Ttr2)/u,).

For observations not in the pumped well, two
procedures are available for analyzing the
data. To analyze the data from a single obser-
vation well, a family of type curves of F'(u,a,p)
versus 1/u for different values of a can be plot-
ted for the p value appropriate for the observa-
tion well, using values in table 8.1. This proce-
dure produces a family of type curves similar to
that shown for p=1 in figure 8.2. If p for the
observation well is between p values in table
8.1, function values can be interpolated. Using
this approach, the data for the observation well
are plotted as drawdown versus time and
matched to the best-fitting member of the plot-
ted type curves. Transmissivity and storage
coefficient can be calculated from T =(Q/4ms)
F(u,a,p) and S =4Tt/r>)/1/u).

Drawdowns at more than one observation
point may be combined by preparing a compos-
ite plot of the drawdowns at each observation

well versus #/r®. This composite plot would be
analyzed by matching it to a family of type
curves of F'(u,a,p) versus 1/u for constant a. An
example of such a type-curve family for ¢=10"*
is shown in figure 8.3. This method requires
multiple sheets of type curves, one sheet for
each value of a. When the data curves are
matched to the type-curve family, care should
be taken to insure that the data for each well
fall on the type curve having the appropriate p
value. This will be possible for all the data for
only one value of a. Transmissivity and storage
coefficient are calculated from T =(Q/4ws)
F(u,a,p) and S =4T (t/r*)/(1/u).

In both of these methods of plotting and com-
paring data, an alternate computation of stor-
age coefficient is S=r2a/r2. However, as
pointed out by Papadopulos and Cooper (1967,
p. 244), the shapes of type curves differ only
slightly when « changes by an order of mag-
nitude, therefore the determination of S is sen-
sitive to choosing the “correct” curve.
Papadopulos and Cooper (1967, p. 244) suggest
that if S can be estimated within an order of
magnitude, the value of « to be used for match-
ing the data can be decided.
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The early parts (short time) of the curves in
figure 8.2 are straight lines. According to
Papadopulos and Cooper (1967, p. 244), these
represent conditions under which all the water
pumped is derived from storage within the
well. The straight lines approached by the
curves satisfy the equations

F(u,,a) = alu,
and

volume of water discharged
area of well

Sy =Qt/mr: =

Therefore, as pointed out by Papadopulos and
Cooper (1067, p. 244), data that fall on this
straight part of the type curves do not indicate
information about the aquifer characteristics.

Table 8.2 is a listing of two FORTRAN pro-
grams by S. S. Papadopulos that evaluate

F(UWsALPHA) FOR ALPHA= 1.00000€E~0G4

F(u,,o0) and F(u,a,p). The input data to both
programs consists of cards coded in specified
format (readers unfamiliar with FORTRAN
language format should refer to a FORTRAN
language manual). Input to the programs is
one or more groups of data, each group of data
consisting of two cards. The first card contains
one value of alpha in columns 1-10, coded in
format E10.5. The program to evaluate
F(u,a,p) also requires a value of rho on this
card in columns 11-20. This value of rho,
which must be greater than one, is also coded
in format E10.5. The second card contains 16
values of u coded in columns 1-5, 6-10, .. .,
75-80 in format 16F5.0. The F(u,,a) or
F(u,a,p) values will be printed in the order
that the u values are coded. If less than 16 val-
ues of u are desired, the remaining columns on
the card may be left blank. Outputs from these
two programs are shown in figures 8.4 and 8.5.

F(UWyALPHA) X(PEAK) Y (PEAK)

uw INTEGRAL INTEGRAL ERROR
2.00000E 00 1.54210€ 03 ~6.98844E-02
1.00000E 00 3.08412E 03 =1.39817€-01
5.00000E~01 6.,16789E 03 -2.,T4TT5E-01
2.00000E-01 1.54184E 04 ~6.37533E-01
1.00000E-01 3.08331€ 04 ~1.3971S€E 00
5.00000E-02 6.,16529E 04 -2.71364E 00
2.00000E-02 1.54061E 0S =6.97112E 00
1.00000E-02 3.07919E 05 -1.39383E 01
5.00000E~03 6.15138E 0S5 =2.T876TE 01
2.00000E-03 1,53334E 06 -6,82757¢ 01
1,00000E-03 3.05367E 06 ~1.38658E 02
5.00000E-04 6.06085E 06 =2.76458E 02
2+00000E-~04 1.48475E 07 -6.79220E 02
1.00000E~04 2.88072E 07 ~1.30780E 03
5.00000E~05 5.45352E 07 ~2+50960E 03
2400000E~05 1.18065E 08 -5.40026E 03

4.99991E-05
9.99956E~05
1.99980E-04
4,99907E~04
9.99695E-04
1.99896E-03
4499507E-03
9.,98359E-03
1.99445€E-02
4,971%52E-02
9.90083E-02
1.96509€E-01
4481397E-01
9.34008€E-01
1.76A818E 00
3.82800F 00

5.96561E~03
£.96561E~03
5.96561E-03
5496561E-03
5.96560E£-03
5e96559E-03
5.96559E=-03
5.96554E-03
5.96549€-03
5.96527€E-03
5.96493E-03
5496425E-03
5.96223E-03
5.95886E-03
5.95237€~03
5493415E-03

5.55886E 05
1.11177€ 06
242723538 06
S+55875E 06
1.11173E 07
2.22335E 07
5.55764E 07
1.11128E 08
2.22157E 08
5.54652€ 08
1.,10684E 09
2.20389€ 09
5.43712€ 69
1.06380E 10
2.03734E 10
4.49196E 10

Ficure 8.4.—Example of output from program for drawdown inside a well of finite diameter due to constant discharge.

F(UsALPHAsRHO) FOR ALPHA=

u INTEGRAL
9.99999900E-04

5.00000000E~04 1.28359500E 03
1.99999900E~04 3.26376700E 03
1.00000000E~04 6.55423000E 03
5.00000000E~05 1.30015800E 04
2.00000000E~05 3.11692500E 04
9.99999900E~-06 5.79505700E 04
4+99999900E-06 1.01023500E 05
1.99999900E~06 1.78237100E 05

1.00000000E~06
4+999G5G6900E~-07
1.99999900E~07

1.00000E~05S,

6.29273600E 02

2.30897600E 05
2.,63222100€ 05
2.88201800€ 05

2.00000E 00
INTEGRAL ERROR

5.45096700E~01
1.11649700E 00
2.47402200E 00
3.31468400E 00
3.,53750700E 00
3.54940500E 00
3.54602200E 00
3.53222000E 00
3.62180400€ 00
3.66347000E 00
3.6R84T7000F 00
3.52180300F 00

F(UsALPHAWRHO)

3.20486300E-02
6.53728800E-02
1.66222200E-01
3.33803700E-01
6.62164900E-01
1.58743500E 00
2.95139600E 00
5.14508300E 00
9.07753300E 00
1.1756510n0E 01
1.34057800F 01
1.46779900F 01

Ficurke 8.5.—Example of output from program for drawdown outside a well of finite diameter due to constant discharge.
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Solution 9: Slug test for a
finite-diameter well in a nonleaky
aquifer

Assumptions:

1. A volume of water, V| is injected into, or
is discharged from, the well instan-
taneously at t=0.

2. Well is of finite diameter and fully pen-
etrates the aquifer.

3. Agquifer is not leaky, and flow is in ra-
dial direction only.

Differential equation:
8%h/8r* + (1/r) 0h/or = (SIT) dh/dt, r>r,

This differential equation describes
nonsteady radial flow in a homogeneous iso-
tropic aquifer beyond the radius of the injected
well.

Boundary and initial conditions:

h(rrmt) =H(t); t>0 (1)

h(ot)=0, t>0 (2

O, T st = 22 OHWO g (g
ar at

h(r,00=0,r>r, 4)

H©) =H, = Vinr? )

Equation 1 states that the head change in
the aquifer at the face of the well is equal to
that inside the well; one assumes that there is
no exit loss at the well face. Equation 2 states
that the head change approaches zero as dis-
tance from the discharging well approaches in-
finity, a condition which will be approximated
if boundaries of the aquifer are sufficiently dis-
tant from the discharging well. Equation 3
states that near the well the radial flow is
equal to the rate of change in volume of water
inside the well. Equations 4 and 5 state that
initially the head change is zero in the aquifer,
and the head increase or decrease inside the
well is equal to H,.

Solution (Cooper and others, 1967):

b= (ZH(,/W)_/;)x (exp(—Bua){ Joluriry,)
-[uY(,(u)— 2aY (u) ] -Y.(ur/r,)
[udy (@)~ 2ed, )]} /A@)) du, 6)

where a=r%8/r,
B=THr2
and Aw) = [udy(w) —2ad ,(u) ]?

+ [uYo(u)—2aY,(w)]2

JeandY,, J,and Y,, are zero-order and first-
order Bessel functions of the first and second
kind, respectively.

The head, H, inside the well, obtained by
substituting r=r,, in equation (6) is

H/H, = F(B,m),

where
x<

F(B,a) = (8a/7r2)/ (exp(—Bu/a)/ul(u)) du

0

and where «, 8, A{u) are as defined previously.
Comments: Figure 9.1 is a cross section show-
ing geometric configuration along the well
bore. The volume of water injected into or dis-
charged from the well is #r2 H,. The water-
level data in the injected well, expressed as a
fraction of H,, is plotted versus time on semi-
logarithmic graph paper. This plot is superim-
posed on figure 9.2, keeping the baselines the
same and sliding horizontally until a match or
interpolated fit is made. A match point for 8, ¢,
and « is picked from the two graphs.
Transmissivity is calculated from T = 8r2/t and
storage coefficient from S = ar#/r? . As pointed
out by Cooper, Bredehoeft, and Papadopulos
(1967, p. 267), the determination of S by this
method has questionable reliability because of
the similar shape of the curves, whereas the
determination of T is not as sensitive to choos-
ing the correct curve. Figure 9.2 on plate 1 is
plotted from data in table 9.1, which contains
original material from two sources (Cooper and
others, 1967; and Papadopulos and others,
1973).

Table 9.2 is a listing of a FORTRAN program
by S. S. Papadopulos that evaluates F(8,x).
Input to the program consists of cards coded in
a specific format (readers unfamiliar with
FORTRAN formats should refer to a FOR-
TRAN language manual). Input consists of two
or more cards, each containing a single value of
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Ficure 9.1.—Cross section through a well in which a slug of water is suddenly injected.

a coded in format F16.5. The first a < 0 will
signal program termination. Qutput from the
program is shown in figure 9.3.

Solution 10: Constant discharge

from a fully penetrating well in an

aquifer that is anisotropic in the
horizontal plane

Assumptions:

1. Well discharges at a constant rate, Q.

2. Well is of infinitesimal diameter and
fully penetrates the aquifer.

3. Aquifer is anisotropic in the horizontal
plane.

4. Aquifer is not leaky.

5. The transmissivity of the aquifer, T, is
a two-dimensional symmetric tensor.

Differential equation:

T.. 0%s/0x? + 2T,,0%s/0x0y + T,,0%s/0y*

+ Q 8(x)8 (y) = Sds/ot.

This differential equation describes
nonsteady flow in a homogeneous anisotropic
aquifer with a constantly discharging well at
x=y=0. The Dirac delta function is represented
as 8(z) and has the following properties: 8(z)=0
if z#0 and f ~ 8(z)dz=1.

Boundary and initial conditions:

s(x,y,00=0 (1)
s(xo,y,t)=0 (2)
s(x, +%,£)=0 (3)
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TaBLE 9.1.—Values of H/H,
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From Cooper, Bredehoeft, and Papadopulos, 1967

Ttir.? a 107 10~ 10 10+ 107
1.00 0.9771 0.9920 0.9969 0.9985 0.9992
1073 2.15 .9658 .9876 9949 9974 .9985
464 .9490 .9807 9914 .9954 .9970
1.00 .9238 .9693 9853 9915 .9942
1072 2.15 .8860 9505 9744 .9841 .9883
4.64 .8293 .9187 .9545 9701 9781
1.00 .7460 .8655 .9183 .9434 9572
107! 2.15 .6289 7782 .8538 .8935 9167
4.64 4782 .6436 7436 .8031 .8410
1.00 3117 4598 5729 .6520 .7080
10° 2.15 .1665 .2597 .3543 .4364 .5038
4.64 .07415 .1086 .1554 .2082 .2620
7.00 .04625 .06204 .08519 1161 .1521
1.00 .03065 .03780 .04821 .06355 .08378
1.40 .02092 .02414 .02844 .03492 .04426
10! 2.15 .01297 .01414 .01545 .01723 .01999
3.00 .009070 .009615 .01016 .01083 .01169
4.64 .005711 .004919 .006111 .006319 .006554
7.00 .003722 .003809 .003884 .003962 .004046
1.00 002577 .002618 .002653 .002688 .002725
102 2.15 .001179 .001187 .001194 .001201 .001208
From Papadopulos, Bredehoeft, and Cooper, 1973
Ttirt a 10- 107 107 10~ 1071
1 0.9994 0.9996 0.9996 0.9997 0.9997
2 .9989 .9992 .9993 .9994 .9995
1073 4 .9980 .9985 .9987 .9989 .9991
6 .9972 9978 .9982 .9984 .9986
8 .9964 9971 9976 .9980 .9982
1 .9956 .9965 .9971 9975 .9978
2 9919 .9934 .9944 .9952 .9958
1072 4 .9848 .9875 .9894 .9908 .9919
6 9782 9819 .9846 .9866 .9881
8 9718 9765 .9799 9824 .9844
1 .9655 9712 9753 9784 .9807
2 9361 .9459 .9532 .9587 .9631
107! 4 .8828 .8995 9122 .9220 .9298
6 .8345 .8569 .8741 .8875 .8984
8 7901 .8173 .8383 .8550 .8686
1 .7489 .7801 .8045 .8240 .8401
2 .5800 .6235 .6591 .6889 7139
3 .4554 .5033 .5442 5792 .6096
4 .3613 .4093 4517 .4891 .5222
10° 5 .2893 .3351 .3768 4146 4487
6 2337 2759 3157 .35625 .3865
7 .1903 .2285 .2655 3007 3337
8 .1562 .1903 .2243 2573 .2888
9 .1292 .1594 .1902 .2208 2505
1 .1078 .1343 .1620 .1900 2178
2 .02720 .03343 .04129 .05071 .06149
3 .01286 .01448 01667 .01956 .02320
10 4 .008337 .008898 .009637 01062 .01190
5 .006209 .006470 .006789 .007192 .007709
6 .004961 005111 .005283 .005487 .005735
8 .003547 .003617 .003691 .003773 .003863
1 002763 .002803 .002845 .002890 .002938
102 2 .001313 .001322 .001330 .001339 001348
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F(BETAW.ALPHA) FOR ALPHA= 1,00D=-01
RETA H/HO
1.000-03 0.9769
2.000-03 0.9670
4,000=-03 0.9528
6.000-03 09417
8.00')-03 0.9322
1.000-02 0.9238
2.000-02 0.8904
4,00D0=-02 D.B421
6.00N=07 0.8048
R,00D-02 0.7734
2.000-01 Na6418
4,000=-01 05095
6.000=-01 0.4227
B8.000=-01 03598
1.000 00 03117
2.000 00 0.1786
3.000 00 0.1196
4,000 00 N.0876
5.000 00 0.0681
6,000 00 0.0553
7T.000H Q0 0.0463
8,000 00 0.0396
9,00 00 0.0346
1.000 01 0.0306
2,000 01 Ne01l4l
3.000 01 N.00091
4,000 01 0.0067
5.000 01 00053
A D0 D] 00044
7.000 01 N.0037
B.00fy 01 0.0032
9.007 01 0.0029
1.000 02 0,0026
2.000 02 0.0013
4,000 02 0.0006
000 0272 Ne0004
R.,000 02 0,0003
1.000 03 0.,0003

FIGURE 9.3.—Example of output from program to compute
change in water level due to sudden injection of a slug of
water into a well.

Equation 1 states that, initially, drawdown
is zero. Equations 2 and 3 state that the draw-
down approaches zero as distance from the dis-
charging well approaches infinity, a condition
which will be approximated if boundaries of
the aquifer are sufficiently distant from the
discharging well.

TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

Solution (Papadopulos, 1965, p. 23):

s = (QMAnVT, ,T,—T:2) Wuy ), 4)
where
ade ¥
W(u) =J (e7v/v) dv
u
and
Uyy = (SIAENT pzy* + Typx?
- 2T.ruxy)/(T1'rTyy - Tz?u)' (5)

If the coordinate axes x and y are the same as
the principal axes ¢ and 7 (fig. 10.1) of the
transmissivity tensor, the preceding equation
for drawdown becomes

s =(QHAnV T, T,,) Wug),
where
Uey = (SI4)Tee n2 + T,y T, Ty .

Comments: The method of type-curve solution
as outlined by Papadopulos (1965, p. 26) re-
quires observation of drawdown in at least
three observation wells. First, choose a conve-
nient rectangular coordinate system with the
pumped well at the origin. Then, plot the ob-
served drawdown versus ¢ on logarithmic
paper. Match these plots to the W(u) type curve
given in solution 1. Choose a match point of
(¢,s) and (1/u,,, W(u,y)) for each well and com-
pute T,.T,,—T2, = (@W(u,,)4mws)* for each
well. Match points for all observation wells
should yield approximately the same value of
(T3:T,w—T2). Usually they will not and
judgment must be used to obtain an “average”
value. Substituting this value and the three
values of (x,y) in equation 5 gives three equa-
tions in three unknowns ST,.,, ST ,,, and ST .
These equations are of the form

y2(ST_n-) + x2(STyu) - 2xy(ST.z'y)
= 4tup (TexTyy — Thy ).

Solve these three equations to determine 7',
Ty, and T, in terms of S, and S may be de-
termined from
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Ficure 10.1.—Plan view showing coordinate axes.

S =V (ST,ST,, - (ST, AT .T,, — T2).
Then, compute T,,, T, and T,, from ST,,,
ST,,, and ST,,. T, , T,, , and O (the angle
between the x and the € axis) may be calculated
from the relations (Papadopulos, 1965, p. 28)

Te =12(T, + Tyy+ (Trr — Ty,
+ 4T 2)1?)
T, =U2T,., + Ty, —(Tyr — Ty
+ 4T 2)0?)
O = arctan (T — T2V T4y).

Solution 11: Variable discharge
from a fully penetrating well in a
leaky aquifer

Assumptions:
1. Well discharge changes as a specified
function of time.
2. Well is of infinitesimal diameter and
fully penetrates the aquifer.
3. Aquifer is overlain, or underlain,
everywhere by a confining bed hav-

ing uniform hydraulic conductivity
(K’) and thickness (b').
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4. Confining bed is overlain, or underlain,
by an infinite constanthead plane
source.

5. Hydraulic gradient across confining bed
changes instantaneously with a
change in head in the aquifer (no re-
lease of water from storage in the
confining bed).

6. Flow in the aquifer is two-dimensional
and radial in the horizontal plane
and flow in the confining bed is verti-
cal. This assumption will be approx-
imated closely where the hydraulic
conductivity of the aquifer is suffi-
ciently greater than that of the con-
fining bed.

Differential equation:
s  1os _sK' _Sds

o2 T rar Tb Tt

This is the differential equation describing
nonsteady radial flow in a homogeneous iso-
tropic aquifer with leakage proportional to
drawdown.

Boundary and initial conditions:

s(r,0)0=0 (1)
5(,t)=0 2

i Q'i-;._.g_(_t_)_ t = 3
,}I_I.Tbrar 27T’ 0 @)

Equation 1 states that, initially, drawdown
is zero. Equation 2 states that drawdown is
zero at large distances from the pumped well.
Equation 3 states that near the pumped well
the radial flow is equal to the discharge of the
pumped well, which is a function of time.

Solution:

Solutions for certain discharge functions
have been published by Abu-Zied and Scott
(1963), and Werner (1946) for a nonleaky
aquifer, and by Hantush (1964a) for both leaky
and nonleaky aquifers. For arbitrary discharge
functions for leaky aquifers, a solution using
the convolution integral has been presented by
Moench (1971, eq. 3):

t
s = (1/477T)f QUNI(t-1'))
U]
- exp (—A/(t—t") — (t—t)K'/Sb")dt’, (4)

where Q(¢) is the discharge function of time
and A = r?S/4T. A numerical integration
scheme is generally necessary to evaluate the
above equation.

For type curves, a more useful form of equa-
tion 4 is

t
s = (Q,/477T2/ [QuNQ, (t—t))]
0
-exp [—A/t-t)—(—t"K'ISb']dt’, (5)

or

s = (@./47T) SO(), (6)

where SO(¢?), read “system output function,”
represents the integral expression in equation
5, and @, is an arbitrary discharge that elimi-
nates dimension from the integral expression.
For example, @, could be the initial, final, or
average discharge, according to the needs of
the user.

Comments: Figure 11.1 is a cross section
through the discharging well. This situation is
the same as for solution 4, except for the vary-
ing discharge of the well. The effect of finite
well radius (r,) was investigated by Hantush
(1964b, p. 4224), who concluded that for
t>25r28/T and r,./ VTb'/K' < 0.1 the draw-
down could be represented closely by the con-
volution integral.

Figure 11.2 on plate 1 shows a selected set of
type curves for linear change in discharge in a
nonleaky aquifer. The solution for this type of
discharge function has been presented by
Werner (1946, p. 706). The discharge function
for figure 12.2 is Q(t)=Q,(1+ct), and the re-
sulting drawdown is

s = (Qu/AnTIW ) {1 +et[u+1—e W) ]},

where W(u) is the well function of Theis. Sub-
stituting A/u for ¢ in the above expression gives

s = (Qo/47T) W(u)

S(1+cA {1+/w) [l—e‘“/W(u)]}),
or

s = (Qu/4wT) SO (1),

where SO (¢) represents

W) (1+cA {1+ @) [1-e W) ]}).

(
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Ficure 11.1.—Cross section through a well with variable discharge.

This substitution permits the plotting of a
family of type curves, each curve specified by a
value of cA.

Table 11.1 is the listing of a FORTRAN pro-
gram designed to evaluate the above convolu-
tion integral for five different discharge func-
tions. Three of these discharge functions are
those devised by Hantush (1964a, p. 343, 344),
who presented solutions for drawdown result-
ing from these functions. These three discharge
functions are:

(@) Q)=Q,[1+8 exp (—tlt*)],
(b) Q)=Q,[1+8/(1+t/t*)],

and () Q)=Q,[L+8/VI+yt: ],

where @, is the ultimate steady discharge and §
and #* are parameters defining a particular
function. The first discharge function, for an
exponentially decreasing discharge (case “a” of
Hantush, 1964a) is virtually the same as the
discharge function of Abu-Zied and Scott
(1963). Besides the three functions of Hantush,
the program also includes discharge as a fifth-

5
degree polynomial of time, Q(t)= I a;t' where
1=0

the a@; are the coefficients of the polynomial,
and as a piecewise linear function of time with
eight segments,

Qt)=a,+b,(t—t_;)
for
to<tst,j=1,2,...,8,

where a, and b; are parameters defining the j*
line segment. The program uses a different, but
equivalent to equation 4, expression for the
convolution integral

t
= (1/47TT3[ (Qt—t"it")
0
.exp (—A/t'—t'K'/8b") dt'.

The program uses a sum to approximate the
convolution integral. It chooses a starting
value of ¢’ that satisfies r2S/4Tt' +K't'/Sb' =
100. If such a value of ¢’ does not exist, that is,
(r:S/4T) (K'1Sb')>2500, then a value of zero is
assigned for the integral value. The ending
point of the interval is picked as 10 times the
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starting point. The integral over this interval

is approximated by a trapezoidal sum using’

500 subdivisions of the interval. A new inter-
val is then constructed using the previous end
point as a new starting point and a new ending
point equal to 10 times the new starting point.
This new interval is again evaluated by a
trapezoidal sum of 500 segments. This summa-
tion procedure over intervals that are succes-
sively an order of magnitude larger continues
until either t'=t or (r:S/4Tt') + (K't/ISb')
>101. Input to this program consists of cards
coded in specific formats. Readers unfamiliar
with FORTRAN formats should refer to a
FORTRAN language manual. Input consists of
one or more groups of data, each group consist-
ing of the following. First, one card containing
the beginning time of the period of analysis in
columns 1-10, coded in format E10.3; the end-
ing time coded in columns 1311-20, in format
E10.3; and a discharge index (a number from 1
through 5) coded in column 25, in format I1;
and a reference discharge, QR, coded in col-
umns 31-40, in format E10.3. The discharge
index, 1Q, selects a discharge function, @ (¢), in
the following manner. If IQ =1, the discharge
function is exponentially decreasing,

R =Q,[1+sexp(—#t*)].

This is case (a) of Hantush (1964a, p. 343). If
1@ =2, the discharge function is hyperbolically
decreasing,

Q) =Q,[1+8/(1+t/t*)].

This is case (b) of Hantush (1964a, p. 344). If
IQ =3, the discharge function is the same as
case (c) of Hantush (1964a, p. 344),

Q)=Q,[1+8/VI+4t].
If 1 =4, the discharge function is a fifth-

degree polynomial of time,

5
Qi) = X at.

=0

If IQ =5, the discharge function is a piecewise-
linear function of time with eight or less seg-
ments,

Qt)=a,+b,(t—t,_,)
for tj_1<t$tj,j=1,2, . ,8.

The reference discharge, @R, is used to deter-
mine the form of the output from the program:
If QR is coded as zero (or blank), the output
shows ¢, s (as defined by eq. 4), and Q(¥). If a
value greater than zero is coded for @R, the
output shows 1/u, SO(¢) (as defined by eq. 6),
and Q(1)/QR.

Second, there are orie or more cards contain-
ing parameters of the discharge function. If
IQ =1, 2, or 3, then it consists of one card con-
taining: @ST, the ultimate steady discharge,
coded in columns 1-10, in format E10.3; DE-
LTA, a rate parameter, coded in columns
11-20, in format E10.3; TSTAR, a time param-
eter, coded in columns 21-30, in format E10.3.
If IQ=4, it is one card containing the six
polynomial coefficients. They are coded in the
order ao, a4, ..., a;, in columns 1--10; 11-20,
..., 51-60 all in format E10.3. If I@ =5, then
the program requires four cards, each card con-
taining ¢,, a,, b,, t,11, @41, b,+1; the four cards
representing j=1, 3, 5, 7. The last part of each
set of data consists of two or more cards con-
taining coded values for: distance from pumped
well, in columns 1-10; storage coefficient, in
columns 11-20; transmissivity, in columns
21-30; and ratio of hydraulic conductivity to
thickness for the confining bed, in columns
31-40, all in format E10.3. A blank card is
used to signal the end of each set of data. Qut-
put from this program is shown in figure 11.3.
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